在深度学习与油气开发领域融合的背景下,科研边界持续扩展,创新成果不断涌现。从基本物理模型构建到油气开发问题的复杂模拟,从数据驱动分析到工程问题的智能解决,深度学习正以前所未有的动力推动油气开发领域的革新。以下是深度学习在油气开发领域应用的几个方面:
1. 油气产量预测:深度学习技术已经被大量应用于油气产量预测,在解决复杂环境下的精准产量预测时表现卓越。通过结合地质、工程和地球物理等多元信息,深度学习模型能够有效地识别出影响油气产量的关键因素。
2. 测井解释:深度学习在测井方向的应用,既能做自动岩性、岩石类型、沉积微相识别,也可以做储层物性解释,特别是非常规油藏的测井解释,如裂缝孔隙度解释,合成曲线的生成等。
3. 油藏工程:在油藏工程方面,深度学习在油藏数值模拟、非常规油藏产量预测、流体参数预测等方向表现出了广阔的应用前景。
4. 油气开采优化:深度学习技术在油气开采优化技术中的应用,包括气体探测技术、储层预测分析技术以及安全监测技术。
5. 自动数据处理和解释:数据挖掘和数理统计在石油勘探开发中的应用十分成功,在测井曲线解释、储层参数预测等工作中得到了广泛应用。深度学习、集成学习、迁移学习等技术未来有望在岩石物理、地震图像、测井曲线等数据的自动化处理与分析中得到深入应用。
为促进科研人员、工程师及产业界人士对深度学习在油气开发领域应用技术的掌握,特举办“深度学习驱动的油气开发技术与应用”专题培训会,本次培训会议主办方为北京软研国际信息技术研究院,承办方互动派(北京)教育科技有限公司,具体相关事宜通知如下: